Memorandum

To: File, Internal, Group From: Patrick Ducey

Date: 12/22/2021

RE: AltEn, LLC Proposed Outfall Discharge Limits

NDEE ID: 84069 Program ID: PCS TBD

Water Quality-Based Model Results for Two Proposed Discharge Locations

The content and results of this memorandum are not final. They are subject to change based on new information or the receipt of a NPDES permit application. The proposed requirements in this memorandum were developed using NDEE regulations and guidance and EPA risk-based aquatic life benchmarks for registered pesticides.

The Department investigated the possibility of discharge of treated wastewater from the AltEn facility in response to a request by the AltEn Facility Response Group (AFRG) dated November 17, 2021. There are two proposed discharge locations addressed by this memorandum. The first proposed location would include a discharge directly from the AltEn site, likely after treatment or from a lagoon or tank. For the purposes of this memorandum, this proposed location shall be designated Outfall 003. Outfall 003 is proposed to discharge to an undesignated tributary to Clear Creek. The second proposed location is to pipe the treated wastewater a few miles to a location downstream of Johnson Creek Reservoir 22-A. For the purposes of this memorandum, it will be designated proposed Outfall 004. Outfall 004 is proposed to discharge into Johnson Creek downstream of the reservoir.

The Department used NPDES limit modeling techniques to develop limits for ammonia and pesticides in the form of wasteload allocations. Ammonia is a pollutant present in the treated wastewater and has the potential to negatively impact receiving waterbodies. The Department also modeled potential pesticide limits for multiple parameters that may negatively impact waters of the State.

Ammonia limits in Nebraska are developed to be protective of aquatic life. There are two types of criteria: chronic (30-day) and acute (1-day). The criteria are based on levels that might, if exceeded, negatively harm aquatic life, either acutely causing mortality over a short period (1-day) or negative long-term harm based on impairment through morbidity or reduction in reproduction (30-day). The criteria are based on two numbers: pH and temperature. The chronic criteria are based on the median pH and median temperature of the receiving stream, and the acute criteria are based on the 90th percentile of the effluent pH and temperature. Ammonia limits are anticipated to be present in any permit to be protective of the receiving stream as testing indicates amounts from 350-524 mg/L in the treated AltEn wastewater.

The Department is also concerned about the amount of nutrients present in the treated wastewater. While most nitrogen is present in the form of ammonia, if the water is treated to remove ammonia, it may be chemically changed into nitrate. There are Title 117 and Title 118 limits for nitrate. One Title 117 limit is based on the public drinking water standard of 10 mg/L for nitrate (also the Title 118 groundwater limit), while the other is 100 mg/L for agricultural use. Limits are anticipated to be present in a permit depending on the designated uses assigned to the receiving stream. It could be based on the stream designation, usage, and interaction with groundwater or wells. One discharge location may have the agricultural limit of 100 mg/L while another outfall location will have a limit based on the drinking water standard of 10 mg/L for nitrate and a 0.7 mg/L limit for Glyphosate.

The Department consulted the groundwater section to review the proposed discharge locations. The groundwater review stated that the discharge at proposed Outfall 003 would be subject to the groundwater standards of NDEE Title 118. This would impose a limit of 10 mg/L for nitrate. The other location, Outfall 004, would not be subject to Title 118 standards if the creek was determined to be perennial and always have flowing water. At this

time, more information may be required to determine if this discharge from Outfall 004 should have NDEE Title 118 limits for nitrate, or if the agricultural limit of 100 mg/L should apply. If drinking water limits apply to Outfall 004 for nitrate, then the public drinking water standard for Glyphosate will apply as well.

The AltEn treated wastewater may contain pesticides. The proposed suite of pesticides to be monitored and/or be limited was chosen based on the pollutants in Table 1 of the AltEn proposed land application plan (Abamectin, Azoxystrobin, Chlorantraniliprole, Clothianidin, Fluoxastrobin, Imidacloprid, Glyphosate, Mefenoxam, Prothioconazole, Sedaxane, Tebuconazole, Thiabendazole, and Thiamethoxam). The most recent version of the plan was submitted to the Department on December 14, 2021 and is available in the public record (NDEE Document ID 20210877921). In addition to the pollutants, any pesticide that was above the detection level in treated wastewater was added to monitored/limited effluent parameters (Fludioxonil and Propiconazole). Laboratory reports with treated wastewater testing results have been submitted for many sampling events such as those that took place on May 24, 2021, June 21, 2021, July 6, 2021, and August 5, 2021.

For most pesticides that have been found at AltEn, there are no NDEE Title 117 water quality criteria. Therefore, the Department used EPA ecological benchmarks (see attachments to this memorandum). The Department based proposed limits on the most stringent EPA benchmark. This could be either the chronic or acute vertebrate or invertebrate benchmark or the most stringent acute plant life benchmark. All proposed limits are based on the ecological benchmarks. The benchmarks are based on toxicity values from scientific studies that EPA reviewed and used to estimate risk to freshwater organisms from exposure to pesticides and their degradates in their most recent publicly available ecological risk assessments.

The only pesticide exception to this is Glyphosate, which has lower NDEE Title 117 drinking water criteria of 700 µg/L. If it is determined that the drinking water standard applies, then the limit will be based on this criteria. For some pollutants, the vertebrate benchmark was more stringent, for other pollutants, the invertebrate benchmarks, and for others the acute plant benchmark was lowest. In any case, the pesticide limits will be crafted to protect water quality and human health.

When no NDEE Title 117 pesticide criteria are available, the Department has determined that EPA benchmarks are protective of water quality of the receiving stream. As set forth in NDEE Title 119, Chapter 3, no permit may be issued to a new source if its construction or operation will cause or contribute to the violation of water quality standards. All permits must be written to be protective of water quality, and all permits are written with an antidegradation clause as set forth in 40 CFR Part 131.12. The limitations in the draft permit are protective of the Clean Water Act Section 101(a)(2) fishable/swimmable goals and ensure the existing quality of water in the receiving stream is not lowered.

According to NDEE Title 117, Chapter 1 071, water quality means the biological, chemical, physical, and radiological integrity of a body of water. Discharges must be protective of the biological integrity of the water body, which means the plant, animal, and bacteriological species of the receiving stream. Therefore, the most protective ecological benchmark was used to calculate proposed permit limits for each outfall.

Outfall 003 is proposed to discharge to an undesignated tributary of Clear Creek (LP2-10120). This receiving stream is an intermittent stream or ditch, though it still is defined as waters of the State as set forth in NDEE Title 119, Chapter 1 122. The outfall would flow within a few hundred feet of a public supply well and might have the possibility to interact with groundwater as there is no full-time flow in the intermittent stream. Therefore, the NDEE 117 public drinking water standard of 10 mg/L for nitrate would be implemented for Outfall 003. The NDEE groundwater section review came to this conclusion. In addition, the public drinking water criteria for Glyphosate, which is the most stringent benchmark, will be used to calculate limits. Other limits will be based on EPA ecological benchmarks.

For the proposed Outfall 004 discharge to Johnson Creek downstream of Johnson Creek Reservoir 22-A (segment LP2-10121), the outfall would discharge to a stream that is designated as perennial according to USGS topographic maps (see attached maps). The Department anticipates year-round flow in this stream, though more data may be needed. Flow in Johnson Creek may be regulated by the presence of the dam on the reservoir, but

overflow/seepage/groundwater flow is anticipated. Based on Department permitting procedures and the NDEE Continuing Planning Process, only surface water standards are to be implemented for the discharge to Johnson Creek. The NDEE Title 117, Chapter 4 water quality criteria and EPA benchmarks are protective of water quality. If Johnson Creek is determined to have sufficient flow, the agricultural criteria of 100 mg/L for nitrate will be implemented for the discharge to Johnson Creek. More data may be needed prior to any permit issuance.

The Department creates water quality-based limits using wasteload allocations (WLAs) following Continuing Planning Process methods, NDEE Title 117 requirements, and EPA methodologies set forth in the *Technical Support Document for Water Quality-based Toxics Control (TSD)*. These WLAs are designed to be protective of the receiving stream. The WLAs utilize mixing zones and mass-balance equations based on water quality criteria and/or benchmarks to create permit limits.

For proposed Outfall 003, the receiving stream conditions are based on the requirements set forth in NDEE Title 117, Chapter 2. According to NDEE Title 117, wastewater may be discharged to intermittent streams or streams with low to no flow (warmwater B criteria requirements are applied). According to the title, there is a regulatory minimum low flow rate. This is 0.1 cubic feet per second (cfs) for the acute and 1.0 cfs for the chronic wasteload allocation. The stream also has maximum mixing zone percentages applied (50% for the acute and 100% for the chronic). For acute criteria and benchmarks, the wasteload allocations will be based on a receiving stream flow of 0.1 cfs and 50% mixing. For chronic-based limits, the receiving stream will have a flow of 1.0 cfs and 100% mixing.

According to the USGS topographic map Johnson Creek has perennial flow, and therefore the flow must be based on stream gage or Department data. There is not any stream gage upstream or downstream of the proposed discharge location. The Department sampled Johnson Creek from May through September in 2016. The site was sampled weekly, including flow. The results of the flow are attached to this memorandum. The day that flow rating curve was created was measured at 0.66 cfs. Flow ranged from 0.66 to 2.4 cfs, with an average of 1.22 cfs. Based on this data, the Department used 0.66 cfs as the receiving stream flow for acute-based wasteload allocations and the average of 1.22 cfs for the chronic-based calculations.

For variable flow receiving stream wasteload allocations (WLAs) such as Johnson Creek, other data is needed. The Department chose the average flow of 1.22 cfs as the known stream flow. Velocity was obtained from Department data sheets and is included in the memorandum. A velocity of 0.58 feet per second was chosen to be used in wasteload allocations as it was in the center of the stream. For width, on the day the rating curve was produced, the stream was measured to be 6 feet wide, so this value was used in all WLAs. When the flow was divided by the velocity and width, an average depth of 0.35 feet was obtained and used in the WLA. If more receiving stream flow data is obtained it may be used in subsequent WLAs. As limits are calculated using low flow data, any other stream data should be obtained in periods of low flow.

Stream slope was based on topographic maps and was a foot per mile higher than the value measured by NDEE. The value of 3 feet per mile was chosen as the discharge point was upstream of the Department field site. The point upstream is anticipated to be steeper based on the topographic map. Sinuosity was calculated by dividing the distance the stream traveled compared to a straight line. This was mapped out in Google Earth and resulted in a sinuosity of 1.13 (see attachments).

For both proposed Outfalls 003 and 004, the discharge would be to a warmwater B stream (or equivalent of a warmwater B). As set forth in NDEE Title 117, the acute mixing zone is 125 feet long. For the chronic mixing zone length in the WLA is 2,500 feet long.

According to Department permitting procedures and the Continuing Planning Process document, the chronic ammonia criteria is based on the receiving stream conditions. Therefore, the median of monthly average temperature and pH from 2015-2018 were used to calculate the chronic ammonia criteria. For the acute criteria, effluent data is used as the stream is anticipated to be effluent-dominated. A large amount of temperature data is not available, so the 90th percentile of Wahoo Creek was used for the acute criteria. The Wahoo Creek sampling point was used as it was the nearest sampling site with monthly data. For pH, effluent data was used. However,

only a few sample results for pH from treated effluent were used. The pH was measured to be from 6.7 to 7.0 standard units. It is possible that further treatment may change the pH. To be conservative and protective of the receiving stream, a pH of 7.5 was used in the acute criteria calculation. This may change based on new effluent information.

For a coefficient of variation, needed in all WLAs, the Department did not have enough data to calculate a WLA according to *TSD* requirements. Therefore, the default value of 0.6 was chosen as it represented a reasonable degree of effluent variability as set forth in the *TSD*.

Background ammonia may impact the amount of ammonia a facility can discharge as the amount present in the stream is already allocated. Excess ammonia from the effluent cannot negatively impact the receiving stream, so the background levels must be taken into account when limits are calculated. Background ammonia levels for each stream location was based on data from Wahoo Creek (LP2-10100), the nearest sample location with monthly sample results. For chronic WLAs, the median of monthly average data was used, while for the acute WLAs the 90th percentile of monthly averages was used. This location does not have any pesticide sampling data, so the background pesticide levels were set at zero for both acute and chronic WLAs. If background pesticide levels are determined, the WLAs may need to be updated.

In addition to water quality criteria and benchmarks, the Department may use other data to create WLAs. Effluent flow is needed. For this memorandum, the Department modeled four flow rates for each discharge. These are 0.1, 0.5, 1.0, and 1.5 million gallons per day (MGD). Four tables of proposed limits are provided for each discharge location.

The results of the water quality-based calculations are included below. The results are organized by discharge location and proposed effluent flow. Based on the results, the lack of receiving stream flow means that most proposed ammonia and pesticide limits are criteria-based. Increasing effluent flow may only result in a slight reduction of limits as the discharge would need to be at or near criteria level to be able to meet water quality.

The Department looked at data for wastewater that had been treated for pesticides. Based on the results, ammonia must be treated to meet the proposed permit limits. For Outfall 003, nitrates must be removed to meet the 10 mg/L standard and for 004 it must meet the agricultural standard of 100 mg/L. Based on the sampling results for pesticides, at current levels, the proposed discharges have the potential to exceed water quality for Abamectin, Chlorantraniliprole, Clothianidin, Ipconazole, Prothioconazole, Tebuconazole, and Thiamethoxam. In order to discharge and meet water quality, the wastewater would need to be further treated for pesticides.

The possibility exists that the amount of pesticides or conventional pollutants may combine to make the effluent degrade water quality, or there could be an unknown pollutant. The effluent must not negatively impact water quality or degrade the designated uses of the stream. Therefore, the Department will be implementing whole effluent toxicity limits. The limit is established via a wasteload allocation using the ammonia mixing zones calculated for each outfall and flow rate. Based on the results of the WLAs, the limit for each discharge location and flow rate is the same. A limit of 1.0 acute toxicity units is set forth for both Outfalls 003 and 004.

There are other pollutants of concern. The biochemical oxygen demand (BOD) levels of the treated effluent are high, with values reported as high as 3000 mg/L. There is concern that this amount of BOD will cause impairment to the dissolved oxygen levels in the stream. Two types of limits may be considered: technology-based limits or water quality-based limits. Technology-based limits may be implemented using the requirements in 40 CFR, the best professional judgment process, or by implementing NDEE Title 119, Chapter 21 secondary standards.

As a former ethanol producing facility (SIC code 2869), the treated wastewater is process wastewater. The wastewater, while currently treated for pesticides, was a byproduct of the ethanol making process. If stormwater, it may have been in contact with pesticides and other byproducts. This process wastewater is subject to the requirements set forth in 40 CFR Part 414. The applicability section set forth in 40 CFR Part 414.60 stated that process wastewater resulting from the manufacture of ethanol is regulated by the section. Therefore, the

wastewater discharged from the site can have limits for conventional pollutants BOD and total suspended solids (TSS). Based on the date of the regulations and age of the AltEn facility, the wastewater is subject to the new source performance standards set forth in 40 CFR Part 414.64. BOD shall have a limit of 30 mg/L for a monthly average and 80 mg/L for a daily maximum. TSS shall have a limit of 46 mg/L for a monthly average and 149 mg/L for a daily maximum.

If the BOD limits are based on water quality, for Johnson Creek a Streeter-Phelps calculation may be used to calculate a dissolved oxygen sag. The equation can be used to find the maximum amount of BOD that can be discharged and to not cause the stream to go below Title 117, Chapter 4 warmwater dissolved oxygen standards. More information may be required to determine if the wastewater discharged to the receiving stream shall have water quality-based limits for BOD.

The amounts of total suspended solids, total organic carbon, and total phosphorus may cause impairment to the receiving stream. Total suspended solids levels in the treated wastewater have been from 52.3-387 mg/L, though they also have been as low as less than 9.8 mg/L. Total organic carbon has been from 855-2710 mg/L. Phosphorus has been from 29.3 to 140 mg/L in the treated wastewater. If solids are removed, the amount of phosphorus is anticipated to go down. However, this is dependent on the treatment technology. Based on new information, potential monitoring and limits may be determined in future limit drafting. As stated above, TSS can have technology-based limits set forth from 40 CFR Part 414.64.

The pH limits for the discharge are water quality-based limits set forth in NDEE Title 117, Chapter 4. The pH shall be maintained between 6.5 and 9.0 standard units (S.U.).

The Department has determined that the proposed discharge from Outfall 003 is infeasible. The concerns are NDEE Title 117 public drinking water and NDEE Title 118 groundwater limits, the downstream impoundment on the undesignated tributary to Clear Creek, and the possibility that the anticipated effluent flow would overwhelm the receiving stream (undesignated tributary). In addition, the proposed Outfall 003 receiving stream received contaminated stormwater, and without testing or remediation, the amount of pesticides present in the tributary is unknown. Therefore, the Department will not permit a discharge of treated process wastewater directly from the AltEn, LLC location (proposed Outfall 003).

Further treatment may be required if the proposed permit is to discharge to Outfall 004. These limits for the site are constrained by the amount of receiving stream flow, potential to impact groundwater, and the water quality-criteria and benchmarks. These proposed limits are calculated to be protective of the receiving streams.

Johnson Creek and the downstream Clear Creek are anticipated to flow over the City of Lincoln Wellhead Protection Area (WHPA). If the receiving stream has a large flow rate there is less potential to negatively impact groundwater quality. Clear Creek (LP2-10130) is a coldwater stream. It is possible that it will provide more flow to downstream segments. Based on increased flow it is less likely that a discharge into Clear Creek would interact with groundwater. However, whether groundwater limits for pollutants such as nitrate should be implemented for Outfall 004 is still up for debate and can change based on new information. At this time, if there is appreciable flow, the agricultural limit of 100 mg/L for nitrate is anticipated to be implemented.

That Day

Outfall 003 Discharge to Undesignated Tributary to Clear Creek - 0.1 MGD Effluent Flow

AltEn, LLC - Projected Limitations for Outfall 003 - 0,1 MGD Parameter Monthly Average Daily Maximum									
Parameter	Monthly Average	Daily Maximum							
Spring Ammonia (March I – May 31)	7.43 mg/L	14.90 mg/L							
Summer Ammonia (June 1 – October 31)	4.07 mg/L	8.16 mg/L							
Winter Ammonia (Nov. 1 – February 28 [29])	11.38 mg/L	22.84 mg/L							
Abamectin	0.112 μg/L	0.225 µg/L							
Azoxystrobin [†]	32.32 μg/l.	68.84 μg/L							
Chlorantraniliprole	5,474 µg/L	10.982 μg/L							
Clothianidin	0.452 μg/L	0.907 μg/L							
Fludioxonil	126.57 μg/L	253.92 μg/L							
Fluoxastrobín	39,572 μg/L	79,390 µg/L							
Glyphosate ³	6328,5 µg/L or 6.3285 mg/L	12696.2 μg/L or 12.6962 mg/L							
lmidacloprid	0.0904 μg/L	0.1814 µg/L							
Ipconazole	1.627 μg/L	3.265 μg/L							
Mefenoxam	10849 μg/L or 10.849 mg/L	21765 μg/L or 21.765 mg/L							
Propiconazole ¹	13.850 µg/L	27.786 μg/L							
Prothioconazole [†]	3.496 μg/L	7.013 µg/L							
Sedaxane	Report	Report							
Tebuconazole	99.45 μg/L	199.51 μg/L							
Thiabendazole	102.23 μg/L	205.09 μg/L							
Thiamethoxam	6.690 μg/L	13.422 μg/L							
Nitrate as Nitrogen	Report	10 mg/L							
BOD	30 mg/L	80 mg/L							
TSS	46 mg/L	149 mg/L							
pH	6.5 - 9	9.0 S.U.							
Whole Effluent Toxicity – <i>Ceriodaphnia sp</i>	Report	1.0 TUa							
Whole Effluent Toxicity – Pimephales Promelas	Report	1.0 TUa							

¹Calculated using the most stringent acute-based plant benchmark ²Calculated using the most stringent human health benchmark

Outfall 003 Discharge to Undesignated Tributary to Clear Creek - 0.5 MGD Effluent Flow

AltEn, LLC - Projected Limitations for Outfall 003 - 0.5 MGD								
Parameter	Monthly Average	Daily Maximum						
Spring Ammonia (March I – May 31)	3.55 mg/L	7.12 mg/L						
Summer Ammonia (June 1 – October 31)	1.86 mg/L	3.74 mg/L.						
Winter Ammonia (Nov. l – February 28 [29])	3.56 mg/L	7.14 mg/L						
Ahameetin	0.090 μg/L	0.181 μg/L						
Azoxystrobin ¹	26.00 μg/L	52.17 μg/L						
Chlorantraníliprole	4.405 μg/L	8.836 µg/L						
Clothianidin	0.139 μg/L	0.279 μg/L						
Fludioxonîl	38.881 μg/L	78.003 μg/L						
Fluoxastrobin	31.840 μg/L	63.878 µg/L						
Glyphosate ²	1944.1 µg/L or 1.9441 mg/L	3900.1 μg/L or 3.9001 mg/L						
Imidacloprid	0.0278 µg/L	0.0557 μg/L						
lpconazole	0.500 μg/L	1.003 µg/L						
Mefenoxam	3332.7 μg/L or 3.3327 mg/L	6686.0 µg/L or 6.686 mg/L						
Propiconazole ⁱ	i 1.144 μg/1.	22.357 μg/L						
Prothioconazole ¹	2.813 μg/L	5.643 µg/L						
Sedaxane	Report	Report						
Tebuconazole	30.55 μg/L	61.29 μg/L						
Thiabendazole	82.25 μg/L	165.02 μg/L						
Thiamethoxam	2.055 μg/L	4.123 μg/L						
Nitrate as Nitrogen	Report	10 mg/L						
BOD	30 mg/L	80 mg/L						
TSS	46 mg/L	149 mg/L						
pH	6.5 – 9	.0 S.U.						
Whole Effluent Toxicity — Ceriodaphnia sp	Report	1.0 TUa						
Whole Effluent Toxicity — Pimephales Promelas	Report	1.0 TUa						

¹Calculated using the most stringent acute-based plant benchmark ²Calculated using the most stringent human health benchmark

Outfall 003 Discharge to Undesignated Tributary to Clear Creek - 1.0 MGD Effluent Flow

AltEn, LLC – Projected Limitations for Outfall 003 – 1.0 MGD								
Parameter	Monthly Average	Daily Maximum						
Spring Ammonia (March 1 – May 31)	2.58 mg/L	5.19 mg/L						
Summer Ammonia (June 1 – October 31)	1.36 mg/L	2.73 mg/L						
Winter Ammonia (Nov. 1 – February 28 [29])	2.58 mg/L	5.18 mg/L						
Abamectin	0.087 µg/L	0.175 μg/L						
Azoxystrobin ¹	25.24 μg/L	50.58 μg/L						
Chlorantraniliprole	4.271 µg/L	8.568 µg/L						
Clothianidin	0.0997 μg/L	0.2000 μg/L						
Fludioxonil	27,920 μg/L	56.013 μg/L						
Fluoxastrobin	30.874 μg/L	61.939 µg/L						
Glyphosate ²	1396.0 μg/L or 1.396 mg/L	2800.6 μg/L or 2.8006 mg/L						
Imidacloprid	0.0199 μg/L	0.0400 µg/L						
Ipconazole	0.359 μg/L	Ö.720 μg/L						
Mefenoxam	2393.15 μg/L or 2.3932 mg/L	4801.11 μg/L or 4.8011 mg/L						
Propiconazole ¹	10.806 μg/L	21.679 μg/L						
Prothioconazole ¹	2.727 µg/L	5.471 μg/L						
Sedaxane ⁻	Report	Report						
Tebuconazole	21.94 μg/L	44.01 μg/L						
Thiabendazole	79.76 μg/L	160.01 μg/L						
Thiamethoxam	1.476 μg/L	2.961 μg/L						
Nitrate as Nitrogen	Report	10 mg/L						
BOD	30 mg/L	80 mg/L						
TSS	46 mg/L	149 mg/L						
pH	6.5 9	.0 S.U.						
Whole Effluent Toxicity — Ceriodaphnia sp	Report	1.0 TUa						
Whole Effluent Toxicity — Pimephales Promelas	Report	1.0 TUa						

¹Calculated using the most stringent acute-based plant benchmark ²Calculated using the most stringent human health benchmark

Outfall 003 Discharge to Undesignated Tributary to Clear Creek - 1.5 MGD Effluent Flow

AltEn, LLC - Projected Limitations for Outfall 003 - 1.5 MGD Parameter Monthly Average Daily Maximum									
	Monthly Average	Dany Maximum							
Spring Ammonia (March 1 May 31)	2.26 mg/L	4.54 mg/L							
Summer Ammonia (June 1 – October 31)	1,19 mg/L	2.39 mg/L							
Winter Ammonia (Nov. 1 – February 28 [29])	2.26 mg/L	4.53 mg/L							
Abamectin	0.087 μg/L	0.174 μg/L							
Azoxystrobín ¹	24.95 μg/L	50.06 μg/l.							
Chlorantraniliprole	4.226 μg/L	8.479 μg/L							
Clothianidin	0.0867 μg/L	0.1739 μg/L							
Fludioxonil	24.266 μg/L	48.683 μg/L							
Fluoxastrobin	30.552 μg/L	61.293 µg/l.							
Glyphosate ²	1213.3 μg/L or 1.2133 mg/L	2434,i μg/l. or 2,4341 mg/l.							
Imidacloprid	0.0173 μg/L	0.0348 μg/L							
Ipconazole	0.312 μg/L	0.626 µg/L							
Mefenoxam	2079.98 μg/L or 2.080 mg/L	4172.83 μg/L or 4.1728 mg/L							
Propiconazole ⁱ	10.693 μg/L	21.452 µg/l.							
Prothioconazole ¹	2.699 μg/L	5.414 μg/L							
Sedaxane	Report	Report							
Tebuconazole	19.07 μg/L	38.25 μg/L							
Thiabendazole	72.80 µg/L	146.05 μg/L							
Thiamethoxam	1.283 µg/L	2.573 μg/L							
Nitrate as Nitrogen	Report	10 mg/L							
800	30 mg/L	80 mg/L							
TSS	46 mg/L	149 mg/L							
pH	6.5 - 9	0.0 S.U.							
Whole Effluent Toxicity Ceriodaphnia sp	Report	1.0 TUa							
Whole Effluent Toxicity — Pimephales Promelas	Report	1.0 TUa							

¹Calculated using the most stringent acute-based plant benchmark ²Calculated using the most stringent human health benchmark

Outfall 004 Discharge to Johnson Creek downstream of Reservoir 22-A - 0.1 MGD Effluent Flow

AltEn, LLC – Projected Limitations for Johnson Creek – 0.1 MGD								
Parameter	Monthly Average	Daily Maximum						
Spring Ammonia (March 1 – May 31)	11.57 mg/L	23.20 mg/L						
Summer Ammonia (June 1 – October 31)	6.48 mg/L	12.99 mg/L						
Winter Ammonia (Nov. 1 – February 28 [29])	13.53 mg/L	27.15 mg/L						
Abamectin	0.181 μg/L	0.364 μg/L						
Azoxystrobín ¹	52.308 μg/L	104.940 μg/L						
Chlorantraniliprole	8,860 μg/L	17.776 µg/L						
Clothianidin	0.538 μg/L	1.080 µg/L						
Fludioxonil	150.68 μg/L	302.30 μg/L						
Fluoxastrobin	64.051 μg/L	128.498 µg/L						
Glyphosate ¹	12703 µg/L or 12.703 mg/L	25486 μg/L or 24.486 mg/L						
Imidacloprid	0.108 μg/L	0.216 μg/L						
Ipconazole	1.937 μg/L	3.887 μg/L						
Mefenoxam	12916 µg/L or 12.916 mg/L	25912 μg/L or 25.912 mg/L						
Propiconazole ⁱ	22.418 μg/L	44.974 μg/L						
Prothioconazole ¹	5.658 µg/l.	11.351 µg/L						
Sedaxane	Report	Report						
Tebuconazole	!18.40 μg/L	237.52 µg/L						
Thiabendazole	165.47 μg/L	331.95 μg/L						
Thiamethoxam	7.965 µg/L	15.979 μg/L						
Nitrate as Nitrogen	Report	100 mg/L						
BOD	30 mg/L	80 mg/L						
TSS	46 mg/L	149 mg/L						
pH	6.5 - 9	D.0 S.U.						
Whole Effluent Taxicity — Ceriodaphnia sp	Report	1.0 TUa						
Whole Effluent Toxicity — Pimephales Promelas	Report	1.0 TUa						

¹Calculated using the most stringent acute-based plant benchmark

Outfall 004 Discharge to Johnson Creek downstream of Reservoir 22-A - 0.5 MGD Effluent Flow

Parameter	Monthly Average	Daily Maximum		
Spring Ammonia (March 1 – May 31)	3.98 mg/L	7.98 mg/L		
Summer Ammonia (June 1 – October 31)	2.09 mg/L	4.19 mg/L		
Winter Ammonia (Nov. 1 – February 28 [29])	3.99 mg/L	8.00 mg/L		
Abamectin	0.091 µg/L	0.183 µg/L		
Azoxystrobin ¹	26.35θ μg/L	52.864 μg/L		
Chlorantraniliprole	4.463 μg/L	8.954 µg/L		
Clothianidin	0.156 μg/L	0.313 μg/L		
Fludioxonil	43.704 μg/L	87.679 µg/L		
Fluoxastrobin	32.266 μg/L	64.731 μg/L		
Glyphosate ⁱ	6399 μg/L or 6.399 mg/L	12838 μg/L or 12.838 mg/L		
Imidacloprid	0.031 µg/l.	0.063 µg/L		
lpconazole	0.562 μg/l.	1.127 µg/L		
Mefenoxam	3746 μg/L or 3.746 mg/L	7515 μg/L or 7.515 mg/L		
Propiconazole ⁱ	11.293 μg/L	22.656 µg/l.		
Prothieconazole ¹	2.850 μg/L	5.718 μg/L		
Sedaxane	Report	Report		
Tebuconazole	34.339 μg/L	68.890 μg/L		
Thiabendazole	83.353 µg/L	167.222 μg/L		
Thiamethoxam	2.310 μg/L	4.634 µg/L		
Nitrate as Nitrogen	Report	100 mg/L		
BOD	30 mg/L	80 mg/L		
TSS	46 mg/L	149 mg/L		
pH	6.5 – 9	0.0 S.U.		
Whole Effluent Toxicity — Ceriodaphnia sp	Report	1.0 TUa		
Whole Effluent Toxicity — Pimephales Promelas	Report	1.0 TUa		

Calculated using the most stringent acute-based plant benchmark

Outfall 004 Discharge to Johnson Creek downstream of Reservoir 22-A - 1.0 MGD Effluent Flow

AltEn, LLC – Projected Limitations for Johnson Creek – 1.0 MGD								
Parameter	Monthly Average	Daily Maximum						
Spring Ammonia (March 1 – May 31)	2.80 mg/l.	5.61 mg/L						
Summer Ammonia (June 1 – October 31)	1.47 mg/L	2.95 mg/L						
Winter Ammonia (Nov. 1 – February 28 (29))	2.80 mg/L	5.61 mg/L						
Abamectis	0.088 μg/L	0.177 μg/L						
Azoxystrobín ^t	25.387 μg/L	50.932 μg/L						
Chlorantraniliprole	4.300 μg/L	8.627 μg/L						
Clothianidin	Ö.108 μg/L	0.217 μg/L						
Fludíoxonil	30.332 μg/L	60.851 μg/L						
Fluoxastrobin	31.087 μg/L	62,366 µg/L						
Glyphosate ^t	6166 μg/L or 6.166 mg/L	12369 μg/L or 12.369 mg/L						
Imidacloprid	0.022 μg/L	0.043 μg/L						
lpconazole	0.390 μg/L	0.782 μg/L						
Mefenoxam	2600 μg/L or 2,60 mg/L	5216 µg/L or 5.216 mg/L						
Propiconazole ¹	10.880 μg/L	21.828 µg/L						
Prothioconazole ¹	2.746 μg/L	5.509 μg/L						
Sedaxane	Report	Report						
Tebuconazole	23.832 µg/L	47.811 µg/L						
Thiabendazole	80.307 µg/L	161.111 μg/L						
Thiamethoxam	1.603 μg/L	3.216 μg/L						
Nitrate as Nitrogen	Report	100 mg/L						
800	30 mg/L	80 mg/L						
TSS	46 mg/L	149 mg/L						
p}{	6.5 – 9	9.0 S .U.						
Whole Effluent Toxicity – Ceriodaphnia sp	Report	1.0 TUa						
Whole Effluent Toxicity – Pimephales Promelas	Report	1.0 TVa						

¹Calculated using the most stringent acute-based plant benchmark

Outfall 004 Discharge to Johnson Creek downstream of Reservoir 22-A - 1.5 MGD Effluent Flow

AltEn, LLC - Projected Limitations for Johnson Creek - 1.5 MGD								
Parameter	Monthly Average	Daily Maximum						
Spring Ammonia (March 1 – May 31)	2.40 mg/L	4.82 mg/L						
Summer Ammonia (June 1 – October 31)	1.26 mg/L	2.54 mg/L						
Winter Ammonia (Nov. 1 – February 28 [29])	2.40 mg/L	4.81 mg/l.						
Abamectin	0.087 μg/L	0.174 μg/L						
Azoxystrobin ¹	25.066 μg/L	50.288 μg/L						
Chlorantraniliprole	4.246 μg/L	8.518 μg/l.						
Clothianidin	0.092 µg/L	0.185 μg/L						
Fludioxonil	25.874 μg/L	51,908 µg/L						
Fluoxastrobin	30.694 μg/L	61.577 μg/l.						
Glyphosate [†]	6088 μg/L or 6.088 mg/L	i 2213 μg/L or 12.213 mg/L						
Imidacloprid	0.018 µg/l.	0.037 μg/L						
Ipconazole	0.333 μg/L	0.667 µg/L						
Mefenoxam	2218 μg/L or 2.218 mg/L	4449 µg/l. or 4,449 mg/l.						
Propiconazole ¹	10.743 μg/L	21,552 μg/L						
Prothioconazole ¹	2.711 µg/L	5.439 μg/L						
Sedaxane	Report	Report						
Tehuconazole	20.330 μg/L	40.785 μg/L						
Thiabendazole	77.622 μg/L	155.725 μg/L						
Thiamethoxam	1.368 μg/L	2.744 μg/L						
Nitrate as Nitrogen	Report	100 mg/L						
BOD	30 mg/L	80 mg/L						
TSS	46 mg/1.	149 mg/L						
pH	6.5 - 9).0 S.U.						
Whole Effluent Toxicity — Ceriodaphnia sp	Report	1.0 TUa						
Whole Effluent Toxicity — Pimephales Promelas	Report	1.0 TUa						

Calculated using the most stringent acute-based plant benchmark

INTEG	RATSEGMENT IO	STATION ID	ACTIVITY_S1	MONTH	TEMP	00	9H	AMRAONIA	NO3 NO2	TKN	TOTAL_N_T	æ
2020	LP2-10100	SLP2WAHOO107	2015-03-03	3		12.7	7.7	0.05	2.92	0.5	3.42	0.188
2020	LP2-10100	SLP2WAH00107	2016-03-08	3		10.5	8.3	0.05	3.27	1.82	5.09	0.363
2020	LP2-10100	SLP2WAH00107	2017-03-07	3		11	8.1	0.05	3.24	0.853	4.093	0.34
2020	LP2-10100	SLP2WAH00107	2018-03-05	3		10.3	7.8	0.318	2 33	2.11	4.44	0.834
2020	LP2-10100	SLP2WAH00107	2015-04-09	ě	97	10.3	8.2	0.134	2.13	0.941	3.071	0.317
2020	LP2-10100	SLP2WAH00107	2016-04-05	å	13.7	10.8	8.3	0.05	.2.54	0.562	3.102	0.221
2020	LP2-10100	SLP2WAH00107	2017-04-06	4	93	10.9	8	8 0557	2.68	0,905	3.586	8.31
2020	LP2-10100	SLP2WAHOO107	2018-04-03	٤	4.7	12.6	8.1	0.102	3.05	0.942	3.992	0.298
2020	LP2-10100	SLP2WAH00107	2015-05-04	Ŕ	14.5	8.8	7.9	1.6	4.61	12.5	17 11	4.36
2020	LP2-10100	SLP2WAHOO107	2015-05-11	8	15.6	7.6	7.8	0.477	2.37	8.48	10.85	3.44
2020	1.92-10100	SLP2WAHOO107	2015-05-20	ž.	12.9	9.5	8.2	0.0728	3.5	1.24	4.74	0.561
2020	LP2-10100	SLPZWAHOO107	2015-05-27	ž		8.2	7.8	0.488	3.18		9.14	1.9
2020	LP2-10100	SLP2WAH00107	2016-05-03	ž		9.2	8	0.335	3.66		5.87	0.885
2020	LP2-10100	SLP2WAH00107	2017-05-02	8		78	76	0.619	3.69	4.07	7.76	1.58
2020	LP2-10108	SLPZWAHOO107	2018-05-16	8		89	82	0.05	2.69		3 428	0.299
		Spring	Median		11.600	10.300	8.000	0.102	3.050			0.363
2020	: 200 420425	en mmeralionera en	90th Per		17.460	11.960	8.280	0.567	3.678			2 8 2 4
2020 2020	LP2-10100 LP2-10100	SLP2WAHOO107 SLP2WAHOO107	2015-06-03 2015-06-08	8		8.5 7.2	7.9 7.8	0 137	3.1	1.34	4.44	0.529
2020	LP2-10100	SLP2WAHOO107	2015-06-15	د (7.8	3.0	0.158	3.68 3.12		8.62 5.3	1.78 0.865
2030	LP2-10100	SLP2WAHOO107	2015-06-22	š		7.6	8.2	0.0706	3,42		4.67	0.529
2020	LP2-10100	SLP2WAHOO107	2015-06-29			8	8.2	0.0522	3.2		4.3	0.508
2020	LP2-10100	SLP2WAHQ0107	2016-06-08			8.2	8	0.0522	4.55	1.33		0.527
2020	LP2-10100	SLP2WAHOC107	2017-08-87			8.4	7.9	0.126	3.64		4.8	0.519
2020	LP2-10100	SLP2WAH00107	2018-06-12			7.7	8.2	0.05	2.61	1.28	3.87	0.568
2020	LP2-10100	SLP2WAH00107	2015-07-08	3		8.3	7.9	6 05	2.87	1.5	4.37	0.62
2020	LP2-10100	SLP2WAHOC107	2015-07-14	3		8.4	8.1	0.05	3			8.471
2020	LP2-10100	SLP2WAHOO107	2015-07-22	3		8.8	6.4	0.05	3.03		3.912	0.378
2020	LP2-10100	SLP2WAHOO107	2015-07-28	3	268	7.7	8.2	0.05	2.88	0.94	3.82	0.489
2020	LP2-10100	SLP2WAH00107	2016-07-07	3	23.1	6.2	7.5	0.26	23	6	8,3	2 11
2020	LP2-10100	SLP2WAHOQ107	2017-07-06	3	23.7	7.7	8	0.0847	4.19	1.3	5.49	0.593
2020	LP2-10100	SLP2WAHOO107	2018-07-03	?	24.6	7.3	7.8	0.05	2.51	2.4	4.91	1.02
2020	LP2-10100	SLP2WAHOO107	2015-06-04	٤	21.6	7.8	8.3	0.0919	2.47	1.81	4.28	0.812
2020	LP2-10100	SLP2WAHOO107	2015-08-10	٤	24.9	7.3	8	0.0759	2.12	1.92	4.04	0.863
2020	LP2-10100	SLPZWAHOO107	2015-08-17	8	22.2	7.9	8.4	0.0902	2.57	2.14	4,71	80.1
2020	LP2-10100	SLP2WAHOO107	2015-06-25	8	19.1	8.9	8.3	0.0518	2.69	1 15	3.84	0.519
2020	LP2-10100	SLP2WAH00107	2015-08-04	8		8.7	7.8	0.0928	2.45	2.45	4.9	0.92
2020	LP2-10100	SLP2WAHOO107	2017-06-01	ê		8.3		0.08	3.4		4.46	0.485
5050	LP2-10100	SLP2WAHOO107	2018-06-08	8		8.6	94	0.08	2.78		3.99	0.491
5050	LP2-10100	SLP2WAHQQ107	2015-09-01	9		8.3	â	0.05	2.46		3.53	0.521
2020	LP2-10100	SLP2WAHOO107	2015-09-10	9		9	8.3	0.08	2.62		3.21	9.36
2020 2020	LP2-10100	SLP2WAHQQ107	2015-09-16	9		8.3	8.7	0.08	3.25	0.5	3.75	9.315
2020 2020	LP2-10100 LP2-10100	SUP2WAHQQ10?	2015-09-23	9		8.5	8.2	0.0723	2.87	0.733	3.603	0.417
2020	LP2-10100	SLP2WAHOO107 SLP2WAHOO107	2015-09-30 2016-09-05	5 5		9.8 8.6	8 8	0.0665	2:14	0.852	2.992	0.416
2020	LP2-10100	SLP2WAHOO107	2017-09-06	5		9.5	8.4	0.11 0.0536	296 309	1.09 0.757	4 05 3.847	0.425 0.391
2020	LP2-10108	SLP2WAHOO107	2018-09-06	9		61	7.9	0.197	0.546	3.62	4.166	1.48
2020	LP2-10100	SLP2WAHOO187	2015-10-05	10		10.3	8.3	0.05	2 92	0.5	3 42	0.3
2020	LP2-10108	SLP2WAHOO107	2016-10-11	10		9:	8.5	0.1	3 38	0.918	4.278	0.426
2020	LP2-10108	SLP2WAHOO107	2017-10-02	10		72	7.8	0.0948	199	3.88	5.87	1.74
2020	LP2-10100	SLP2WAHOO107	2018-10-01	10		9.8		0.0505	2.81	1.05	3 86	0.45
		Summer	Median		21.500	8.300	8.000	0.060	2.875		4.239	0.520
			90th Per		24.810	9.380	8.400	0.134	3.574	3.269		1.360
2020	LP2-10100	SLP2WAH00107	2015-01-05	1	0.1	14	7.3	0.0915	3.37	0.5	3.87	0.211
2020	LP2-10100	SLP2WAHOO107	2016-01-13	3	ð	13.7	8.3	0:134	3.59	0.535	4.125	0.255
2020	LP2-10100	SLP2WAHOO107	2017-01-19	3	24	12	8.2	0.68	3.38	3.22	6.58	1.85
	LP2-10100	SLP2WAH00107	2018-01-09.	3		12.9	7.9	0.0708	3.54	0.53	4.07	0.214
,5050	LP2-10100	SLP2WAHOC107	2015-02-05	2		14.2	7.4	0.074	2.92	0.5	3.42	0.173
₂ 2020	LP2-10100	SLP2WAHOC107	2016-02-08	2		12.9	8.3	0.143	3.26	0.918	4.178	0.427
₂ 2020	LP2-10100	SLP2VVAHQQ107	2017-02-14	2		12.1	8.2	0.126	3.66	0 928	4.588	0.45
[*] 2020	LP2-10100	SLP2WAH00107	2018-02-14	2		13.5	7.9	0.05	3.51	0.58	4.09	0.219
*2020	LP2-10100	SLP2WAHOC107	2015-11-02	11		10.2	8	0.0664	2.63	0.5	3.13	0.246
*2020	LP2-10100	SLP2WAHOO107	2016-11-16	11		11.2	8.1	0.05	3.19	0.58	3.75	0.238
*2020 *2020	LP2-10100	SLP2WAHOO107	2017-11-13	11		12.3	8.2	0.05	3.19	0.544	3.734	0.238
*2020 *3020	LP2-10100	SLP2WAHOO107	2018-11-06	91		11.3	8.3	0.05	2.82	0.654	3.474	0.282
*2020 *2020	LP2-10100	SLP2WAHOO107	2015-12-09	12		119	8.3	0.076	2.99	0.5	3.49	0.196
2020	LP2-10100 LP2-10100	SLP2WAHOO107 SLP2WAHOO107	2018-12-15 2017-12-12	12 12		13.5 13.4	8.5 8.2	0.113	3.9 3.97	0.532 1.01	4.432	0.212 0.3 5 4
2020	LP2-10100	SLP2WAHOO107	2018-12-03	12		12.6	83	0.59	3.07 2.73	3.09	4.98 5.82	1.23
2020		Vinter	Median	· 6	1.900	12.750	8.200	0.075	3.225	0.552	4 075	0.242
			90th Per		7.800	13.850	8.300	0 367	3.825	2.050	5 204	0.840
			and the second second		111.00			n mark				and the second of the

Stream Data for Johnson Creek (LP2-10121)

Segment	Station#	DATE	Month	Temp	00	рН	Ammonia	NO3-NO2	TKN	Total N Assessed	TP	Q
LP2-10121	SLP2JOHNC110	2016-05-02	5	16.5	9.4	8.0	0.419	3.61	2.01	5.62	0.59	2.2
LP2-10121	SLP2JOHNC110	2016-05-09	5	19.4	8.4	7.9	0.343	3.91	2.18	6.09	0.58	1.4
LP2-10121	SLP2JOHNC110	2016-05-16	5	13.7	9.2	8.1	0.278	2.08	3.08	5.16	1.17	1
LP2-10121	SLP2JOHNC110	2016-05-23	5	18.6	7.6	8.2	0.148	3.17	1.77	4.94	0.70	1
LP2-10121	SLP2JOHNC110	2016-05-31	5	20.9	5.9	7.4	0.176	4.93	1.12	6.05	0.47	1
LP2-10121	SLP2JOHNC110	2016-06-06	6	24.8	7.7	8.1	0.139	4.91	1.61	6.52	0.54	1
LP2-10121	SLP2JOHNC110	2016-06-13	6	24.8	6.0	7.8	0.159	5.30	0.85	6.15	0.30	1
LP2-10121	SLP2JOHNC110	2016-06-20	6	25.4	7.3	7.8	0.109	3.94	2.02	5.96	0.51	1.4
LP2-10121	SLP2JOHNC110	2016-06-27	6	22.7	4.4	7.1	0.076	3.72	1.39	5.11	0.47	1
LP2-10121	SLP2JOHNC110	2016-07-05	7	25.1	7.2	7.4	0.122	3.44	1.49	4.93	0.48	2
LP2-10121	SLP2JOHNC110	2016-07-11	7	25.4	7.8		0.050	3.79	0.93	4.72	0.28	1
LP2-10121	SLP2JOHNC110	2016-07-18	7	22.5	7.9	7.7	0.054	3.65	1.18	4.83	0.31	1
LP2-10121	SLP2JOHNC110	2016-07-25	7	28.0	6.9	7.7	0.050	4.60	0.88	5.48	0.24	1
LP2-10121	SLP2JOHNC110	2016-08-01	8	21.7	5.4	7.6	0.084	4.58	0.73	5.31	0.24	1
LP2-10121	SLP2JOHNC110	2016-08-08	8	20.7	8.8	7.6	0.201	6.99	0.88	7.87	0.34	1
LP2-10121	SLP2JOHNC110	2016-08-15	8	17.9	5.4	7.0	0.109	4.81	0.86	5 67	0.25	*
LP2-10121	SLP2JOHNC110	2016-08-22	8	23.0	7.0	7.3	0.240	3.65	1.02	4.67	0.22	1
LP2-10121	SLP2JOHNC110	2016-08-29	8	19.5	5.5	7.6	0.260	4.42	1.10	5.52	0.31	1
LP2-10121	SLP2JOHNC110	2016-09-06	9	19.4	4.9	7.0	0.150	6.05	0.81	6.86	0.23	2.2
LP2-10121	SLP2JOHNC110	2016-09-12	9	18.3	5.7	7.8	0.200	6.95	0.94	7.89	0.26	\$
LP2-10121	SLP2JOHNC110	2016-09-19	9	21.7	6.8	7.1	0.110	3.07	1.48	4.55	0.52	1.7
LP2-10121	SLP2JOHNC110	2016-09-26	9	19.9	8.3	7.3	0.240	4.57	0.98	5.55	0.30	1
		Median		21.300		7.600	0.149	4.180	1.110	5.535	0.322	Mean 1.22
		Crit 90%		25.370	8.760	8.100	0.276	5.975	2.019	6.830	0.585	

EPA Ecological and Human Health Benchmarks

		1	[***************************************		Ecological 8	La nois marks	******					
			Fish:		invert	e bræte s		nia		Office of Wister Aquatic Ute Criteria		Health Benc	hmarks?
Active ingressent	CAS humber	Limit of Quantization (LOQ) (Lygit Y	Freh Acute (sight)	Fresh Chronic (1997).}	invertebrate Acuse (pg/i	invertebrate Chrome (ug/')	182/1	Vasculer Plants Acute (89/1)	(CMC)	Continuous Concertration (CCC)	1-9/L)	Chronic or Lifetime HHSPs (ugr :	Carcinogenic HHBF (E-6 to E-6) (µg/U) *
Abemeciin	2175141-2	9.068	1.8	0.50	2.17	564	> 308000	3800	N/A	N/A	17	15	N-A
Acetemiend Alsera	108410-29-7	3 063 40	> 80000	19220	10.8	ļ	> 1600	> 1900	NA.	A.W.	700	420	2/4
***************************************	13:863-33-8	0.090	248800	147	343588	84	NCA	N/A		264	N6A 6600	1070	53:4
Azoxysimbe	92857-04-3	0.080	235 0.3376	4	0.0002485	0.85005	> 350	3400 > 330	N/A N/A	WA WA	218	N/A	N/A N/A
S Accion	204047-81-0	0.060	WA.	0.084 844	N/A	NA VA	***************************************	N/A	N/A	******	50A	187A	***************************************
Bressinsanie	133-06-3	5 30	13.1	18-5	4000	380	56/A	> 123500	88.8	N/A 3/A	3060	779	26/A
Carbenta.rm	19808-21-7	0.080	NA NA	N/A	•	N/A	300 N/A		8/4	NA NA	930	830	12.4-1240
}	5234-06-4	0.080	***************************************		886 2006	WA.	878	4/A 870	\$	NA.	***************************************		.ş
Cariocom Coloranter i proje	300008-48-7	0.068	600 > 6800	- 5xr4 139	422300	*···	575 5 1780	***************************************	N/A N/A	NA NA	ties N/A	N/A	N/A 20/4
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2921-86-2	0.060	*****	<u> </u>	8.3	3.00	•	> 2200	}	*******		9350	
Crimpyika	ž~~~~		0.8	0.57	0.35	0.04	540		0.000	0.041	N/2	N. S. S.	37.6
Chicayolas methyl	5898-13-0 210880-93-6	0.080	× 2007600	504	2.088	16/A	5/A	N/A	N/A	167A	2.2	1.0	NA
Cicrisando	706394-63-1	9.063	> 683750	9700	(1	0.05	84000	> 280800	N/A	N/A	1700	380	N/A
Cysticentiphie	88389-37-8	0.80	> 6600 0 034	10796	19.2	6.86	> 16000 > 2	> 12100	N/A N/A	N/A N/A	16/A 78	60 KVA	26A 26A
Cyfish m	52515-27-08	0.30	0.039	5.881	·····	6.000.00		N/A		•	·····	,	*·····
Oypermeinen	94001-06-5	0.380	,	N/A	3.00009 N:A	4 9 00006 37 A	25000 NGA	> 1.02 N/A	N/A N/A	16/A 16/A	477 600	N6A 80	N/A N/A
Cyproconscols Geramethon	52916-63-6	9.80	N/A A × W	***************************************	·····	÷		*****	*******	*******	**************	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
,	170448-68-0	0.085	0.575 406	0.017	5 0061 385	0.500028 5.8	> 3 1	> 779	N/A N/A	N/A	196 1760	N/A 60	N/A
Ošanoconscole	8		******	0.86		4~~~~	98	1989		N/A		,	<u>1 tera</u>
Dimoxystratin	169963-52-4	0.080	N/A	N/A	N/A	3/4	N/A	Q/A	16/4	N/A	N/A	N/ 8	N/A
Dexistase	1958(05)3-70-6	0.380	> 49860	8380	× 484190	> 38/3/37	× 67800	> 130880	N/A	N/A	3330	8000	N/A
Epoziconansia	133856-3848	0.080	19/A	19/A	N/A	N/A	58/A	N/A	N/A	WA	9,030	180	0.973-97.8
f Noonezole		0:060	19.A	500	N/A	NA	16A	2/4	N/A	16/4	50/4	884	<u> </u>
Fluid description	131341-86-3	0,060	205	18	450	16	280	630	N/A		N/A	2000	N/A
Fiscousetooke	361377-09-6	0.080	217.5	58.7		<u> </u>	360	1200	N/A	A-2/	560	- 89	<u> NA</u>
(Sudva neva	77188-83-8	:0	> 166000	50000	325500	31000	32	1439	N/A	N/A	1860	40	<u> </u>
Gryphcadia	1071-80-6		2 (800)	25700	28899	45000	12100	11930		2/4	N/A	233	\$
moscoons	1388861-41-3	0.080	114500	2000	0.388	3.01	804	V4	NA	369	530	500	<u> </u>
\$4.07883.56	1283225-08-7	0.380	788	<u>0</u> :8	880	<u> </u>	660	360	N/A		3008		N/A
(Kérasconarole		0.080	18/A	Aga.	N/A	N/A	6/A	3/4	N/A	WA	tija	3//4	N/A
tracknazova		0.080	NA	100	N/A	N/A	NiA	8654	N/A	N/A	19/A	N/A	8/4
ambda-Cynelothin	88085-85-8	0.260	0.0545	5.031	0.03004	0.00008	> 310	> 0.538		3/4	8.3	N/A	8616
Meterouse	706364746	3.380	> 88608	2200	28900	1230	1878	77008	XA		3008	N/A	N/A
Mesomeouse	125116-236	0.080	3653	2.3	2980	3:	81	28	N/A	N/A	8000	200	N/A
Nésangyram		0.080	16.3	87.6	N/A	N/A	1674	16/5A	56/A	N/A	N/A	WA	2×4
Oryaasoobor		0.080	N/A	N/A	NVA	NA	N/A	N/A		3VA	N/A	N/A	Sys
Permetrain	50845-53-1	0.12	35,3995	0.090	0.0038	0.0042	> 3.4	> 3.3	N/A	A\/	2908	N/A	N/A
Pypasyalrober	117426-22.6	0.080	32.5	36	:2			216	N/A	N/A	3,0000	[N/A
P4480486148	00000	3,10	N/A	8/8	N/A	N/A	N/A	86/94	16/A	18/A	N/A	- SA	\$6.6
Propugnazole	902074001	0.080	405		2400	180	21	3600	N/A	32.6	2000	800	N/A
Protrioconszeis	1780235-70-6	8.10	864.6	163	***C	113	5.3	38	N/A	N/A	600	<u></u>	N/A
/ywciosimen	175013-18-0	0.080	3.3	2.35	7.65	4	1.5	1102	N/A	N/A	1000	200	N/A
Sares prairtie		0.080	N/A		184	N/A	N/A	N/A	67.8	**	N/A	N/A	100
Sedazens	876967-67-6	0.080	N/A	N/A	34/4	N/A	N/A	N/A	N/A	28.4	2500	650	50/8
Yebuchosznie	557534-85-3 440864-22.0	0.000	1136	11	1440	130	1486	181	N/A	N/A	190	1772	N/A
Tetraudnaznia	112291-77-3	0.086	3,825	80	1336	190	0.250	310	3%A	N/A	3000	43	N/A
Thuberdazole	1,4807508	0.080	280	710	188	- 22	1480	2326	WA	28.4	3000	800	56.6
Descriped	111988494	0.000	10803	918	18 3	0.97	46,000	2 95 400		56.8	70		0.72%-72.9
Pramaihoram	18/87 1942/344	9.000	> 57000	20000	17.6	0.74	> 99000	> 80000	NA	N/A	2000	71	N/A
Thoughereste methyl	23564-06-8	5 080	9830	SVA	2700	N/A.	6.30	× 8780	%/A	N/A	3000	980	2 55-253
Tickepater	333345-0-33-0	0.990	48.5		> 9900	3.9	185	> 984	6/A	59.4	3700	335	1874
Trifoxystrabin	381517-25-7	0.060	7,15	4.3	12.85	2.76	37.1	> 1990	N/A	N/A	71000	220	N/A
Uniconazola	83857474	0.060 0.060	58:4	N/A	N/A	16.8	5956	N/A	N/A	N/A	1006	100	N/A
Voncongable			N/A	56/A	N/A	N/A	N/A	A146	8/4	N/A	146 A	N/A	N/A

An exployed last is from high Award and government on exportant assessing destroop resolved interesting about the accordance of expositions. This data was updated by IIPA on August 25, 2027
An human relativate is from high Amagust and government interesting and relative for the data was updated by IIPA on August 25, 2021

Chronic Ammonia Criteria Calculation

Warmwater Aquatic Life Use Class Specific Criteria.

Total Ammonia (as nitrogen).

Median In-stream pH and Temperature

Spring				Summer		Winter			
Chronic	Median	Median	Chronic	Median	Median	Chronic	Median	Median	
Criteria	рН	Temp	Criteria	рН	Temp	Criteria	рН	Temp	
1.336	8.000	11.600	0.705	8.000	21.500	1.324	8.200	1.900	

003.04A2 Thirty-day average concentration in mg/l not to exceed the numerical value given by

$$\text{CV} = 0.8876 \left(\frac{0.0278}{1 + 10^{7.688 - pH}} + \frac{1.1994}{1 + 10^{pH - 7.688}} \right) \left(2.126 \times 10^{0.028 \times (20 - \text{Maximum of (Temp. of 7)})} \right)$$

where Temp is °C

003.04A2a The highest four-day average concentration within a thirty-day period shall not exceed 2.5 times the thirty-day criterion.

<u>003.04A2b</u> The following table shows thirty-day average criteria for total ammonia at various temperatures and pHs.

THIRTY-DAY AVERAGE CRITERIA FOR TOTAL AMMONIA (mg/l)
Warmwater Aquatic Life Use Classes

								pН						
		6.6	6.8	7.0	7.2	7.4	7.6	7.8	80	8.2	8.4	8.6	8.8	9.0
	0.0	4.85	4.65	4.36	3.98	3 49	2.94	2.35	1.80	1.32	8.95	0.68	0.49	0.36
	2.0	4.85	4.65	4.36	3.98	3.49	2.94	2.35	1.80	1,32	0.95	0.68	0.49	0.36
	4.0	4.85	4.65	4.36	3.98	3,49	2.94	2.35	1.80	1.32	0.95	0.68	0.49	0.36
	6.0	4.85	4.65	4.36	3.98	3.49	2.94	2.39	1.80	1.32	8.95	0.68	0.49	0.36
	8.0	4.54	4.36	4.09	3.73	3.28	2.75	2.20	1.68	1.34	0.89	0.64	0.46	0.34
0	10.0	3.90	3.83	3.60	3.28	2.88	2.42	194	1.48	1,09	9.78	9.56	0.40	0,30
× -	12.0	3.51	3.37	3.16	2.88	2.53	2.13	1.70	1.30	0.96	0.69	0.49	0.35	0.26
	14.0	3.09	2.96	3.78	2.53	2.23	1.87	1.50	1.14	0.84	9,61	0.43	0.31	0.23
Temperatur	16.0	2.71	2.60	2.44	2.23	1.96	1.64	1.32	1.01	0.74	9.53	9.38	0.27	0.20
8	18.0	2.38	2.29	2.15	1.96	1.72	1.44	1.16	0.88	0.65	8.47	0.33	0.24	0.18
,	20.0	2.10	2.01	1.89	1.72	151	1.27	1.02	0.78	0.57	9.41	0.29	0.21	0.16
	22.0	1.84	1.77	1.66	1.51	1.33	1.12	0.89	0.68	0.50	0.36	0.26	0.19	0.14
	24.0	1.62	1.55	1.46	1.33	1.17	0.98	0.79	0.68	0.44	8.32	0.23	0.16	0.12
	26.0	1.42	1.37	1.28	1.17	1.03	0.86	0.69	0.53	0.39	0.28	0.20	0.14	0.11
	28.0	1.25	120	1 13	1.03	0.90	0.76	0.61	0.46	0.34	0.25	0.18	0.13	0.09
	30.0	1.10	1.05	0.99	0.90	0.79	0.67	0.53	0.41	0.30	0.22	0.15	0.11	0.08

Acute Ammonia Criteria Calculation

Warmwater Aquatic Life Use Class Specific Criteria.

Total Ammonia (as nitrogen).

90th Percentile Effluent pH and Temperature

	Spring			Summer			Winter	
Acute	P ₉₀	P ₉₀	Acute	P ₉₀	P ₉₀	Acute	P ₉₀	P ₉₀
Criteria	ρН	Temp	Criteria	pН	Temp	Criteria	pН	Temp
11.401	7.500	17.460	6.199	7.500	24.810	20.746	7.500	7.800

003.04A1. One-hour average concentration in mg/l not to exceed the numerical value given by

$$\begin{aligned} \text{AV} &= 0.7249 \left(\frac{0.0114}{1 + 10^{7.304 - pot}} + \frac{1.6181}{1 + 10^{pot - 7.304}} \right) \\ &\times \text{Minimum of } \{51.93. \text{ or } 23.12 (10^{0.024 (20 - 7emp)})\} \end{aligned}$$

where Temp is °C

ONE-HOUR AVERAGE CRITERIA FOR TOTAL AMMONIA (mg/l) Warmwater Aquatic Life Use Classes

								pH						
		6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0
	0.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5,97	4.05	2.77	1.92	138
	2.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	3.97	4.05	2.77	1.93	1.38
	4.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	\$.97	4.05	2.77	1.92	1.38
	6.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5,97	4.05	2.77	1.92	1.38
	8.0	48.86	43.80	37.65	30.81	23.96	17.77	12.66	8.77	5.97	4.05	2,77	1.92	138
0	10.0	48.86	43.80	37.65	30.81	23.96	17.77	12 66	8.77	5.97	4.05	2.77	1.92	1.38
- Car - Su	13.0	42.22	37.85	32.53	26.62	20.70	15 35	10.94	7.58	5.16	3.50	239	1.66	1.19
	14.0	35,77	32.07	27.56	22.56	17.54	13.01	9.27	6.42	4.37	2.97	2.02	1.41	1.01
~~ .	16.0	30.30	27.17	23.35	19 11	14.86	11.02	7.85	5,44	3.71	2.51	1.72	1.19	0.86
femperatus	18.0	25.67	23.02	19.78	16.19	12.59	9.34	6.65	4,61	3.14	213	1.45	1.01	0.73
<i></i>	20.0	21.75	19.50	16.76	13.72	10.67	7.91	5.64	3.90	2.66	1.80	1.23	0.86	0.62
	22.0	18.43	16.52	14.20	11.62	9.04	6.70	4.78	3.31	2.25	1.53	1.04	0.73	0.52
	24.0	15.61	14.00	12.03	9.85	7.66	5.68	4.08	2.80	1.91	1.29	0.88	0.62	0.44
	26.0	13.23	11.86	10.19	8.34	6.49	4.81	3,43	2.37	1.62	1.10	0.75	0.52	0.37
	28.0	11.21	10.05	8.64	7.07	5.50	4.08	2.90	2.01	1.37	0.93	0.63	0.44	0.32
	30.0	9.50	8.51	7.32	5.99	4.66	3.45	2.46	1 70	1.16	0.79	0.54	0.37	0.27

Discharge Point on Johnson Creek Maps – Topographic Map A – Approximate location of proposed Outfall 004

Discharge Point on Johnson Creek Maps – Aerial Photograph A – Approximate location of proposed Outfall 004

Station Number	Scation Name	HUC Code	Survey Date
SLP2JOHNC110	Johnson Creek northeast of Memphis	102002031002	10/3/16
Stream Number	Latifode	Longitude	
LP2-10121	41,146812	-96.337224	

Tape Keading (ft)	(cfs)	Eev (ft)
15.18	0.04	87.56
13.08	3.20	87.70
14.98	-3.48	87.30
18.95	0.66	87.33 * Ref Ht
14.88	283	87.90
14.78	1.29	88.00
11.68	1.77	85.10
14.58	3.33	83.20
14.48	2.94	88.30
14.38	3.60	88.40
14.28	4.32	88.50
14.18	5.04	89.60
14.08	5.52	89.70
13.98	6.57	88.80
13.88	7.37	89.90
13.78	8.24	83.00
11,58	y. 1 6	89:10
13.58	10.14	89.20
: 3,48	11.03	89.30
13.38	12.16	99.4 0
13.28	13.24	89.50
13.18	14.42	89.50
13.08	17.80	89.70
12.98	17.31	89.80
12.88	18.52	89,90
12.78	20.52	93.00
12.68	12.33	90.10
12.54	24.23	99.20
12.48	25.90	99.30
12:38	27,68	99.40
12.28	24.58	90.50
12.18	31.76	90.60
12.08	34,49	90.70
11.98	37.52	90.80
11.88	39.21	90.30
11.78	41.27	91.00
11.68	45.07	91.10
11.58	49.03	91.20

40

	Stream	Channel Sur	vey - Disch:	urge Form	70					
Stream [7]	haba (24	162-197 16. M	easmice by	7/24 /						
Site #: <u>4</u> [219/21		w: <u> </u>	<u></u>						
Latitude:		Lo	Longimete-							
Stroam Width	(1) : (3.10)	R.	facnodG*goHt							
	Calculated D	ischarge (A ² isec);	0.00		*					
Distance from Bank (ft)	Depth st Obs Point (ft)	Vducily of Ota Phirt (tilted)	Distance Lois Benk (ft)	Dugdini One Folit (ft)	Velocity of Cixt. Point (h/sec)					
	0 35	076		Sanda Middennenn						
1.79	3 402	3.40								
	9.342	recesses in relatification expressions	ned	control contro	\$0000000000000000000000000000000000000					
7.2		5.5%			E CONTRACTOR CONTRACTO					
4.0	02.	246								
5/2	92. 3.15	5.30			·					
		4 11 3 4			·					
***************************************			************************************							
•••••					•••••					
			***************************************	***************************************						
					er					
				•						
			†	•						
	i I									
										
· · · · · · · · · · · · · · · · · · ·										

· ····										

	CHAN	NEL SURY	EY HELDS	HEET					
STREAM NA	ME: TOM	<u> 200 </u>	<u> </u>	DATE:	1				
SURVEY LOCATION DESCRIPTION:									
LATITUDE:			LONGITUDE:						
GAGE INSTA	ALLED: YES /	NO)	GAGE III	<u> </u>	<u> </u>				
PHOTOS: UP	· 2 <u>-</u> 2 n	own <u>S</u>	DISC	HARGE CFS)	Name of the second				
	200 DO	. 25							
ŕ	8	CHANNEL	SLOPE DATA						
	(FT) - ((P				in the second				
DISTANCE ()	61): UF		0,000		9				
DISTANCE	PERSONATION	DISTANCE	ELEVATION	DISTANCE (FT)	ELEVATION				
<u>(FT)</u>	7,704	(FI)	· · · · · · · · · · · · · · · · · · ·		X 24				
8.4	7,47								
	742 2?								
3.3	2.2			***********************					
	17:12								
13.5	18.38								
10.5	2.26								
	1.82			and the second s					
	3.404								
		0000000000 x 10000 ** 1444004444444 ** 1000							

		eginen este e construir e en e							
MACCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					<u> </u>				

Sinuosity Calculation – Ls/Lv 4298 / 3793 = 1.13

Thiesfeld, Joseph

From:

Stoll, Hillary

Sent:

Thursday, December 23, 2021 7:15 AM

To:

Thiesfeld, Joseph Ducey, Patrick

Cc: Subject:

Fw: AltEn Proposed Outfall Discharge Limits

Attachments:

AltEn_ProposedLimits_2021_1222.pdf

Hi Joe.

Please send email and the attached document to AltEn's file.

Since this is for a proposed permit and not their existing PCS permit, there is no PCS number yet. If this is an issue for filing purposes, please talk to Patrick as I will be out of the office today and unable to respond to emails until later today. Thank you and happy holidays!

Thanks,

Hillary Stoll | Engineer

Engineering Section
PERMITTING & ENGINEERING DIVISION

Nebraska Department of Environment & Energy

DIRECT: 402-471-4252 | MAIN OFFICE 402-471-2186

PO Box 98922, Lincoln, NE 68509

From: Stoll, Hillary

Sent: Thursday, December 23, 2021 7:12 AM **To:** Don Gunster < dgunster@newfields.com>

Cc: Ducey, Patrick <patrick.ducey@nebraska.gov>; Borovich, Jim <jim.borovich@nebraska.gov>; Buell, Thomas

<thomas.buell@nebraska.gov>; Goans, Steve <steve.goans@nebraska.gov>

Subject: AltEn Proposed Outfall Discharge Limits

Don,

Please see attached memorandum with proposed discharge limits for the two proposed discharge locations requested by AFRG.

Best,

Hillary Stoll | Engineer

Engineering Section PERMITTING & ENGINEERING DIVISION

Nebraska Department of Environment & Energy

DIRECT 402-471-4252 | MAIN OFFICE: 402-471-2186

PO Box 98922, Lincoln, NE 68509